mathematics pages

Mathematical Notation: Diacritical Marks, Arithmetic Functions, and More from LaTeX

Share this post on:

Basic Commands

Diacritical marks

CategorySyntexResult
diacritical marks \dot{a}, \ddot{a}, \acute{a}, \grave{a}$latex \dot{a}, \ddot{a}, \acute{a}, \grave{a}$
\check{a}, \breve{a}, \tilde{a}, \widetilde{a}, \bar{a}$latex \check{a}, \breve{a}, \tilde{a}, \widetilde{a}, \bar{a}$
\hat{a}, \widehat{a}, \vec{a}$latex \hat{a}, \widehat{a}, \vec{a}$

Arithmetic functions

CategorySyntaxResult
exponent and square\exp_a b = a^b, \exp b = e^b, 10^m$latex \exp_a b=a^b, \exp b=e^b, 10^m$
logarithm\ln c, \lg d = \log e, \log_{10} f$latex \ln c, \lg d = \log e, \log_{10} f$
trigonometric function\sin a, \cos b, \tan c, \cot d, \sec e, \csc f$latex \sin a, \cos b, \tan c, \cot d, \sec e, \csc f$
inverse trigonometric function\arcsin h, \arccos i, \arctan j$latex \arcsin h, \arccos i, \arctan j$
hyperbolic function\sinh k, \cosh l, \tanh m, \coth n$latex \sinh k, \cosh l, \tanh m, \coth n$
absolute value|s|$latex |s|$

Minimum and maximum

CategorySyntaxResult
min / max / infinity\min x, \max y, \inf s, \sup w$latex \min x, \max y, \inf s, \sup w$
limit\lim u, \liminf v, \limsup w$latex \lim u, \liminf v, \limsup w$
dimension / matrix\dim p, \deg q, \det m, \ker, \phi$latex \dim p, \deg q, \det m, \ker, \phi$
inductive limit / projective limit\injlim, \varinjlim, \projlim, \varprojlim$latex \injlim, \varinjlim, \projlim, \varprojlim$

Projection

CategorySyntaxResult
projective function\Pr j, \hom l, \lVert z, \rVert, \arg z$latex \Pr j, \hom l, \lVert z, \rVert, \arg z$

Derivatives

CategorySyntaxResult
single derivativedt, \mathrm{d}t, \partial t, \nabla\psi$latex dt, \mathrm{d}t, \partial t, \nabla\psi$
dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}$latex dy/dx, \mathrm{d}y/\mathrm{d}x, \frac{dy}{dx}, \frac{\mathrm{d}y}{\mathrm{d}x}$
single derivative (Lagrangian)\prime, \backprime, f^\prime, f’, f”, f^{(3)}, \dot y, \ddot y$latex \prime, \backprime, f^\prime, f’, f”, f^{(3)}, \dot y, \ddot y$

Similar character symbols

CategorySyntaxResult
similar character symbol\infty, \aleph, \complement, \backepsilon, \eth, \Finv, \Game, \hbar$latex \infty, \aleph, \complement, \backepsilon, \eth, \Finv, \Game, \hbar$
\Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS$latex \Im, \imath, \jmath, \Bbbk, \ell, \mho, \wp, \Re, \circledS$

Modular arithmetic

CategorySyntaxResult
congruences_k \equiv 0 \pmod{m}$latex s_k \equiv 0 \pmod{m}$
remaindera \bmod b$latex a\bmod b$
great common divisor / least common multiple\gcd(m, n), \operatorname{lcm}(m, n)$latex \gcd(m, n), \mathrm{lcm}(m, n)$
divisibility relationship\mid, \nmid, \shortmid, \nshortmid$latex \mid, \nmid, \shortmid, \nshortmid$

Root

CategorySyntaxResult
n-th root\surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}$latex \surd, \sqrt{2}, \sqrt[n]{}, \sqrt[3]{\frac{x^3+y^3}{2}}$

Operator

CategorySyntaxResult
addition / subtraction+, -, \pm, \mp, \dotplus$latex +, -, \pm, \mp, \dotplus$
multiplication / division\times, \div, \divideontimes, /, \backslash$latex \times, \div, \divideontimes, /, \backslash$
\cdot, * \ast, \star, \circ, \bullet$latex \cdot, * \ast, \star, \circ, \bullet$
box shaped operator\boxplus, \boxminus, \boxtimes, \boxdot$latex \boxplus, \boxminus, \boxtimes, \boxdot$
direct sum / tensor product\oplus, \ominus, \otimes, \oslash, \odot$latex \oplus, \ominus, \otimes, \oslash, \odot$
circle shaped operator\circleddash, \circledcirc, \circledast$latex \circleddash, \circledcirc, \circledast$
big operator\bigoplus, \bigotimes, \bigodot$latex \bigoplus, \bigotimes, \bigodot$
semidirect product\ltimes, \rtimes$latex \ltimes, \rtimes$
other operator\centerdot, \leftthreetimes, \rightthreetimes$latex \centerdot, \leftthreetimes, \rightthreetimes$
\intercal, \barwedge, \veebar, \doublebarwedge$latex \intercal, \barwedge, \veebar, \doublebarwedge$
\amalg, \dagger, \ddagger$latex \amalg, \dagger, \ddagger$
\wr, \triangleleft, \triangleright$latex \wr, \triangleleft, \triangleright$

Set

CategorySyntaxResult
empty set\{ \}, \empty, \emptyset, \varnothing$latex \{\}, \empty, \emptyset, \varnothing$
element relationship\in, \notin, \not\in, \ni, \not\ni$latex \in, \notin, \not\in, \ni, \not\ni$
intersection\cap, \Cap, \sqcap, \bigcap$latex \cap, \Cap, \sqcap, \bigcap$
union / disjoint set\cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus$latex \cup, \Cup, \sqcup, \bigcup, \bigsqcup, \uplus, \biguplus$
difference / Cartesian product\setminus, \smallsetminus, \times$latex \setminus, \smallsetminus, \times$
subset\subset, \notsubset, \Subset, \sqsubset$latex \subset, \not\subset, \Subset, \sqsubset$
\supset, \notsupset, \Supset, \sqsupset$latex \supset, \not\supset, \Supset, \sqsupset$
\subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq$latex \subseteq, \nsubseteq, \subsetneq, \varsubsetneq, \sqsubseteq$
\subseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq$latex \subseteq, \nsupseteq, \supsetneq, \varsupsetneq, \sqsupseteq$
\subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq$latex \subseteqq, \nsubseteqq, \subsetneqq, \varsubsetneqq$
\supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq$latex \supseteqq, \nsupseteqq, \supsetneqq, \varsupsetneqq$

Relation

CategorySyntaxResult
equivalence relation=, \ne, \neq, \equiv, \not\equiv$latex =, \ne, \neq, \equiv, \not\equiv$
\doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=$latex \doteq, \doteqdot, \overset{\underset{\mathrm{def}}{}}{=}, :=$
\sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong$latex \sim, \nsim, \backsim, \thicksim, \simeq, \backsimeq, \eqsim, \cong, \ncong$
\approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto$latex \approx, \thickapprox, \approxeq, \asymp, \propto, \varpropto$
order relation<, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot$latex <, \nless, \ll, \not\ll, \lll, \not\lll, \lessdot$
>, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot$latex >, \ngtr, \gg, \not\gg, \ggg, \not\ggg, \gtrdot$
\le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq$latex \le, \leq, \lneq, \leqq, \nleq, \nleqq, \lneqq, \lvertneqq$
\ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq$latex \ge, \geq, \gneq, \geqq, \ngeq, \ngeqq, \gneqq, \gvertneqq$
\lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless$latex \lessgtr, \lesseqgtr, \lesseqqgtr, \gtrless, \gtreqless, \gtreqqless$
\leqslant, \nleqslant, \eqslantless$latex \leqslant, \nleqslant, \eqslantless$
\geqslant, \ngeqslant, \eqslantgtr$latex \geqslant, \ngeqslant, \eqslantgtr$
\lesssim, \lnsim, \lessapprox, \lnapprox$latex \lesssim, \lnsim, \lessapprox, \lnapprox$
\gtrsim, \gnsim, \gtrapprox, \gnapprox$latex \gtrsim, \gnsim, \gtrapprox, \gnapprox$
\prec, \nprec, \preceq, \npreceq, \precneqq$latex \prec, \nprec, \preceq, \npreceq, \precneqq$
\succ, \nsucc, \succeq, \nsucceq, \succneqq$latex \succ, \nsucc, \succeq, \nsucceq, \succneqq$
\preccurlyeq, \curlyeqprec$latex \preccurlyeq, \curlyeqprec$
\succcurlyeq, \curlyeqsucc$latex \succcurlyeq, \curlyeqsucc$
\precsim, \precnsim, \precapprox, \precnapprox$latex \precsim, \precnsim, \precapprox, \precnapprox$
\succsim, \succnsim, \succapprox, \succnapprox$latex \succsim, \succnsim, \succapprox, \succnapprox$
\vartriangleleft, \ntriangleleft, \vartriangleright, \ntriangleright$latex \vartriangleleft, \ntriangleleft, \vartriangleright, \ntriangleright$
\trianglelefteq, \ntrianglelefteq, \trianglerighteq, \ntrianglerighteq$latex \trianglelefteq, \ntrianglelefteq, \trianglerighteq, \ntrianglerighteq$
other relation\diagup, \diagdown$latex \diagup, \diagdown$
\eqcirc, \circeq, \triangleq, \bumpeq, \Bumpeq, \doteqdot, \risingdotseq, \fallingdotseq$latex \eqcirc, \circeq, \triangleq, \bumpeq, \Bumpeq, \doteqdot, \risingdotseq, \fallingdotseq$
\between, \pitchfork$latex \between, \pitchfork$
\smile, \frown$latex \smile, \frown$

Geometry

CategorySyntaxResult
parallel\parallel, \nparallel, \shortparallel, \nshortparallel$latex \parallel, \nparallel, \shortparallel, \nshortparallel$
angle\perp, \angle, \sphericalangle, \measuredangle, 45^\circ$latex \perp, \angle, \sphericalangle, \measuredangle, 45^\circ$
other geometry\Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar$latex \Box, \blacksquare, \diamond, \Diamond \lozenge, \blacklozenge, \bigstar$
\bigcirc, \triangle \bigtriangleup, \bigtriangledown$latex \bigcirc, \triangle \bigtriangleup, \bigtriangledown$
\vartriangle, \triangledown$latex \vartriangle, \triangledown$
\blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright$latex \blacktriangle, \blacktriangledown, \blacktriangleleft, \blacktriangleright$

Logic

CategorySyntaxResult
quantifier\forall, \exists, \nexists$latex \forall, \exists, \nexists$
deduction\therefore, \because, \And$latex \therefore, \because, \And$
disjunction\lor, \vee, \curlyvee, \bigvee$latex \lor, \vee, \curlyvee, \bigvee$
conjuction\land, \wedge, \curlywedge, \bigwedge$latex \land, \wedge, \curlywedge, \bigwedge$
negation / false / true\lnot \neg, \not\mathrm{R}, \bot, \top$latex \lnot \neg, \not\mathrm{R}, \bot, \top$
inference / satisfaction\vdash \dashv, \vDash, \Vdash, \models$latex \vdash \dashv, \vDash, \Vdash, \models$
\Vvdash, \nvdash, \nVdash, \nvDash, \nVDash$latex \Vvdash, \nvdash, \nVdash, \nvDash, \nVDash$
delimiter\ulcorner, \urcorner, \llcorner, \lrcorner$latex \ulcorner, \urcorner, \llcorner, \lrcorner$

Arrow

CategorySyntaxResult
arrow\Rrightarrow, \Lleftarrow$latex \Rrightarrow, \Lleftarrow$
\Rightarrow, \nRightarrow, \Longrightarrow \implies$latex \Rightarrow, \nRightarrow, \Longrightarrow \implies$
\Leftarrow, \nLeftarrow, \Longleftarrow$latex \Leftarrow, \nLeftarrow, \Longleftarrow$
\Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff$latex \Leftrightarrow, \nLeftrightarrow, \Longleftrightarrow \iff$
\Uparrow, \Downarrow, \Updownarrow$latex \Uparrow, \Downarrow, \Updownarrow$
\rightarrow \to, \nrightarrow, \longrightarrow$latex \rightarrow \to, \nrightarrow, \longrightarrow$
\leftarrow \gets, \nleftarrow, \longleftarrow$latex \leftarrow \gets, \nleftarrow, \longleftarrow$
\leftrightarrow, \nleftrightarrow, \longleftrightarrow$latex \leftrightarrow, \nleftrightarrow, \longleftrightarrow$
\uparrow, \downarrow, \updownarrow$latex \uparrow, \downarrow, \updownarrow$
\nearrow, \swarrow, \nwarrow, \searrow$latex \nearrow, \swarrow, \nwarrow, \searrow$
\mapsto, \longmapsto$latex \mapsto, \longmapsto$
\rightharpoonup, \rightharpoondown, \leftharpoonup, \leftharpoondown, \upharpoonleft, \upharpoonright, \downharpoonleft, \downharpoonright, \rightleftharpoons, \leftrightharpoons$latex \rightharpoonup, \rightharpoondown, \leftharpoonup, \leftharpoondown, \upharpoonleft, \upharpoonright, \downharpoonleft, \downharpoonright, \rightleftharpoons, \leftrightharpoons$
\hookrightarrow, \hookleftarrow, \multimap, \leftrightsquigarrow, \rightsquigarrow, \twoheadrightarrow, \twoheadleftarrow$latex \hookrightarrow, \hookleftarrow, \multimap, \leftrightsquigarrow, \rightsquigarrow, \twoheadrightarrow, \twoheadleftarrow$

Others

CategorySyntaxResult
escape\#, \$, \%, \&, \_, \{, \}, \sim, \backslash$latex \#, \$, \%, \&, \_, \{, \}, \sim, \backslash$
card / note\diamondsuit, \heartsuit, \clubsuit, \spadesuit, \flat, \natural, \sharp$latex \diamondsuit, \heartsuit, \clubsuit, \spadesuit, \flat, \natural, \sharp$
others\P, \S, \ldots, \cdots$latex \P, \S, \ldots, \cdots$
\checkmark$latex \checkmark$

Equation

Subscript and Superscript

CategorySyntaxResult
superscipta^2$latex a^2$
subscripty_m$latex y_m$
x_s-x_D$latex x_s-x_D$
multi letter scripta^{2+2}$latex a^{2+2}$
a_{i,j}$latex a_{i,j}$
simultaneous scriptx_2^3 or x^3_2$latex x^3_2$
multi script10^{11^{12}}$latex 10^{11^{12}}$
x_{n_i}$latex x_{n_i}$
prefix / postfix script\sideset{_1^2}{_3^4}\prod_a^b$latex \sideset{_1^2}{_3^4}\prod_a^b$
{}_{b}^{a}X$latex {}_{b}^{a}X$
_{c}^{a}Z_{d}^{b}$latex _{c}^{a}Z_{d}^{b}$
\underset{y}{\overset{x}{_{c}^{a}Z_{d}^{b}}}$latex \underset{y}{\overset{x}{_{c}^{a}Z_{d}^{b}}}$
upper / lower middle script\overset{\alpha}{\omega}$latex \overset{\alpha}{\omega}$
\underset{\alpha}{\omega}$latex \underset{\alpha}{\omega}$
\overset{\alpha}{\underset{\gamma}{\omega}}$latex \overset{\alpha}{\underset{\gamma}{\omega}}$
\stackrel{\alpha}{\omega}$latex \stackrel{\alpha}{\omega}$
derivativex’, y”, f’, f”$latex x’, y”, f’, f”$
x^\prime, y^{\prime\prime}$latex x^\prime, y^{\prime\prime}$
\dot{x}, \ddot{x}$latex \dot{x}, \ddot{x}$

Over Line and Underline

CategorySyntaxResult
tilde\widetilde{ABC}$latex \widetilde{ABC}$
hat\widehat{ABC}$latex \widehat{ABC}$
over line\overline{ABC}$latex \overline{ABC}$
underline\underline{ABC}$latex \underline{ABC}$
over right line\overrightarrow{ABC}$latex \overrightarrow{ABC}$
over left line\overleftarrow{ABC}$latex \overleftarrow{ABC}$
over brace\overbrace{1 + 1 + \cdots + 1}^n = n$latex \overbrace{1 + 1 + \cdots + 1}^n = n$
e_i = (\overbrace{0, \ldots, 0}^{i – 1}, 1, 0, \ldots, 0)$latex e_i = (\overbrace{0, \ldots, 0}^{i – 1}, 1, 0, \ldots, 0)$
under brace\underbrace{1 + 1 + \cdots + 1}_n = n$latex \underbrace{1 + 1 + \cdots + 1}_n = n$
e_i = (\underbrace{0, \ldots, 0}_{i – 1}, 1, 0, \ldots, 0)$latex e_i = (\underbrace{0, \ldots, 0}_{i – 1}, 1, 0, \ldots, 0)$
root\sqrt{123}$latex \sqrt{123}$
\sqrt[3]{123}$latex \sqrt[3]{123}$
t = t_0 / \sqrt{1 – v^2 / c^2}$latex t = t_0 / \sqrt{1 – v^2 / c^2}$

Large Operator

CategorySyntaxResult
sum\sum_{k=1}^N k^2$latex \sum_{k=1}^N k^2$
\sum\nolimits_{k=1}^N k^2$latex \sum\nolimits_{k=1}^N k^2$
product\prod_{i=1}^N x_i$latex \prod_{i=1}^N x_i$
\prod\nolimits_{i=1}^N x_i$latex \prod\nolimits_{i=1}^N x_i$
limit\lim_{n \to \infty}x_n$latex \lim_{n \to \infty}x_n$
\lim\nolimits_{n \to \infty}x_n$latex \lim\nolimits_{n \to \infty}x_n$
integral\int_{-N}^{N} e^x\, dx$latex \int_{-N}^{N} e^x\, dx$
\int\limits_{-N}^{N} e^x\, dx$latex \int\limits_{-N}^{N} e^x\, dx$
double integral\iint_{\mathbb{R}^2} e^{-x^2-y^2}\, dx\,dy$latex \iint_{\mathbb{R}^2} e^{-x^2-y^2}\, dx\,dy$
\iint\limits_{\mathbb{R}^2} e^{-x^2-y^2}\, dx\,dy$latex \iint\limits_{\mathbb{R}^2} e^{-x^2-y^2}\, dx\,dy$
multi integral\iiint_{\mathbb{R}^3} e^{-x^2-y^2-z^2}\, dx\,dy\,dz$latex \iiint_{\mathbb{R}^3} e^{-x^2-y^2-z^2}\, dx\,dy\,dz$
\iiint\limits_{\mathbb{R}^3} e^{-x^2-y^2-z^2}\, dx\,dy\,dz$latex \iiint\limits_{\mathbb{R}^3} e^{-x^2-y^2-z^2}\, dx\,dy\,dz$
line integral\int_{C} x^3\, dx + 4y^2\, dy$latex \int_{C} x^3\, dx + 4y^2\, dy$
\oint_{C’} x^3\, dx + 4y^2\, dy$latex \oint_{C’} x^3\, dx + 4y^2\, dy$
surface integral\iint_{S} x^2\,dx\,dy + y^2\,dz\,dx + z^2\,dx\,dy$latex \iint_{S} x^2\,dx\,dy + y^2\,dz\,dx + z^2\,dx\,dy$

Fraction

CategorySyntaxResult
fraction\frac{3}{4}$latex \frac{3}{4}$
fraction (textstyle)\tfrac{3}{4}$latex \tfrac{3}{4}$
fraction (displaystyle)\dfrac{3}{4}$latex \dfrac{3}{4}$
t=\frac{t_0}{\sqrt{1-\dfrac{v^2}{c^2}}}$latex t=\frac{t_0}{\sqrt{1-\dfrac{v^2}{c^2}}}$
t=\frac{t_0}{\sqrt{1-\frac{v^2}{c^2}}}$latex t=\frac{t_0}{\sqrt{1-\frac{v^2}{c^2}}}$
continued fraction\cfrac{1}{\sqrt{2} + \cfrac{1}{\sqrt{2} + \cfrac{1}{\sqrt{2} + \ddots}}}$latex \cfrac{1}{\sqrt{2} + \cfrac{1}{\sqrt{2} + \cfrac{1}{\sqrt{2} + \ddots}}}$

Binomial Coefficient

CategorySyntaxResult
binomial coefficient\binom{n}{k}$latex \binom{n}{k}$
binomial coefficient (textstyle)\tbinom{n}{k}$latex \tbinom{n}{k}$
binomial coefficient (displaystyle)\dbinom{n}{k}$latex \dbinom{n}{k}$

Matrix

CategorySyntaxResult
matrix\begin{pmatrix} x & y \\ z & v \end{pmatrix}$latex \begin{pmatrix} x & y \\ z & v \end{pmatrix}$
\begin{bmatrix} 0 & \cdots & 0 \ \vdots & \ddots & \vdots \ 0 & \cdots & 0 \end{bmatrix}$latex \begin{bmatrix} 0 & \cdots & 0 \ \vdots & \ddots & \vdots \ 0 & \cdots & 0 \end{bmatrix}$
\begin{Bmatrix} x & y \\ z & v \end{Bmatrix}$latex \begin{Bmatrix} x & y \\ z & v \end{Bmatrix}$
\begin{vmatrix} x & y \\ z & v \end{vmatrix}$latex \begin{vmatrix} x & y \\ z & v \end{vmatrix}$
\begin{Vmatrix} x & y \\ z & v \end{Vmatrix}$latex \begin{Vmatrix} x & y \\ z & v \end{Vmatrix}$
\begin{matrix} x & y \\ z & v \end{matrix}\$latex \begin{matrix} x & y \\ z & v \end{matrix}$
\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}$latex \begin{smallmatrix} a & b \\ c & d \end{smallmatrix}$

Multi Lines

CategorySyntaxResult
casesf(n)= \begin{cases} n/2 & n=2,4,6,\ldots \\ 3n+1 & n=1,3,5,\ldots \end{cases}$latex f(n)= \begin{cases} n/2 & n=2,4,6,\ldots \\ 3n+1 & n=1,3,5,\ldots \end{cases}$

Font

CategorySyntanxResult
Greek\Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta$latex \Alpha \Beta \Gamma \Delta \Epsilon \Zeta \Eta \Theta$
\Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho$latex \Iota \Kappa \Lambda \Mu \Nu \Xi \Pi \Rho$
\Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega$latex \Sigma \Tau \Upsilon \Phi \Chi \Psi \Omega$
\alpha \beta \gamma \delta \epsilon \zeta \eta \theta$latex \alpha \beta \gamma \delta \epsilon \zeta \eta \theta$
\iota \kappa \lambda \mu \nu \xi \pi \rho$latex \iota \kappa \lambda \mu \nu \xi \pi \rho$
\sigma \tau \upsilon \phi \chi \psi \omega$latex \sigma \tau \upsilon \phi \chi \psi \omega$
\varepsilon \digamma \varkappa \varpi$latex \varepsilon \digamma \varkappa \varpi$
\varrho \varsigma \vartheta \varphi$latex \varrho \varsigma \vartheta \varphi$
Hebrew\aleph \beth \gimel \daleth$latex \aleph \beth \gimel \daleth$
Chalkboard Bold Roman\mathbb{ABCDEFGHI}$latex \mathbb{ABCDEFGHI}$
\mathbb{JKLMNOPQR}$latex \mathbb{JKLMNOPQR}$
\mathbb{STUVWXYZ}$latex \mathbb{STUVWXYZ}$
Bold Roman\mathbf{ABCDEFGHI}$latex \mathbf{ABCDEFGHI}$
\mathbf{JKLMNOPQR}$latex \mathbf{JKLMNOPQR}$
\mathbf{STUVWXYZ}$latex \mathbf{STUVWXYZ}$
\mathbf{abcdefghijklm}$latex \mathbf{abcdefghijklm}$
\mathbf{nopqrstuvwxyz}$latex \mathbf{nopqrstuvwxyz}$
\mathbf{0123456789}$latex \mathbf{0123456789}$
Bold Greek\boldsymbol{AlphaBetaGammaDeltaEpsilonZetaEtaTheta}$latex \boldsymbol{AlphaBetaGammaDeltaEpsilonZetaEtaTheta}$
\boldsymbol{IotaKappaLambdaMuNuXiPiRho}$latex \boldsymbol{IotaKappaLambdaMuNuXiPiRho}$
\boldsymbol{SigmaTauUpsilonPhiChiPsiOmega}$latex \boldsymbol{SigmaTauUpsilonPhiChiPsiOmega}$
\boldsymbol{alphabetagammadeltaepsilonzetaetatheta}$latex \boldsymbol{alphabetagammadeltaepsilonzetaetatheta}$
\boldsymbol{iotakappalambdamunuxipirho}$latex \boldsymbol{iotakappalambdamunuxipirho}$
\boldsymbol{sigmatauupsilonphichipsiomega}$latex \boldsymbol{sigmatauupsilonphichipsiomega}$
\boldsymbol{varepsilondigammavarkappavarpi}$latex \boldsymbol{varepsilondigammavarkappavarpi}$
\boldsymbol{varrhovarsigmavarthetavarphi}$latex \boldsymbol{varrhovarsigmavarthetavarphi}$
Italic\mathit{0123456789}$latex \mathit{0123456789}$
Roman\mathrm{ABCDEFGHI}$latex \mathrm{ABCDEFGHI}$
\mathrm{JKLMNOPQR}$latex \mathrm{JKLMNOPQR}$
\mathrm{STUVWXYZ}$latex \mathrm{STUVWXYZ}$
\mathrm{abcdefghijklm}$latex \mathrm{abcdefghijklm}$
\mathrm{nopqrstuvwxyz}$latex \mathrm{nopqrstuvwxyz}$
\mathrm{0123456789}$latex \mathrm{0123456789}$
San-serif\mathsf{ABCDEFGHI}$latex \mathsf{ABCDEFGHI}$
\mathsf{JKLMNOPQR}$latex \mathsf{JKLMNOPQR}$
\mathsf{STUVWXYZ}$latex \mathsf{STUVWXYZ}$
\mathsf{abcdefghijklm}$latex \mathsf{abcdefghijklm}$
\mathsf{nopqrstuvwxyz}$latex \mathsf{nopqrstuvwxyz}$
\mathsf{0123456789}$latex \mathsf{0123456789}$
Cursive\mathcal{ABCDEFGHI}$latex \mathcal{ABCDEFGHI}$
\mathcal{JKLMNOPQR}$latex \mathcal{JKLMNOPQR}$
\mathcal{STUVWXYZ}$latex \mathcal{STUVWXYZ}$
Black letter\mathfrak{ABCDEFGHI}$latex \mathfrak{ABCDEFGHI}$
\mathfrak{JKLMNOPQR}$latex \mathfrak{JKLMNOPQR}$
\mathfrak{STUVWXYZ}$latex \mathfrak{STUVWXYZ}$
\mathfrak{abcdefghijklm}$latex \mathfrak{abcdefghijklm}$
\mathfrak{nopqrstuvwxyz}$latex \mathfrak{nopqrstuvwxyz}$
\mathfrak{0123456789}$latex \mathfrak{0123456789}$

Parentheses

Size

CategorySyntaxResult
Basic size\(x, y)$latex \text (x, y)$
(\sqrt{2})^{\sqrt{2}}$latex (\sqrt{2})^{\sqrt{2}}$
Auto size\left(x, y\right)$latex \left(x, y\right)$
\left(\sqrt{2}\right)^{\sqrt{2}}$latex \left(\sqrt{2}\right)^{\sqrt{2}}$
\left(\frac{1}{2}\right)^n$latex \left(\frac{1}{2}\right)^n$

Shape

CategorySyntaxResult
(A)$latex (A)$
[A]$latex [A]$
\{A\}$latex \{A\}$
|z| or \vert z \vert$latex |z|$
\|f\| or \lVert f \rVert$latex \|f\|$
\lfloor \sqrt{n} \rfloor$latex \lfloor \sqrt{n} \rfloor$
\lceil \sqrt{n} \rceil$latex \lceil \sqrt{n} \rceil$
\ulcorner \phi \urcorner$latex \ulcorner \phi \urcorner$
\llcorner \phi \lrcorner$latex \llcorner \phi \lrcorner$
/ A \backslash$latex / A \backslash$
\langle \psi |$latex \langle \psi |$
\left[0, \frac{1}{2}\right)$latex \left[0, \frac{1}{2}\right)$

Leave a Reply

Your email address will not be published. Required fields are marked *